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e ABSTRACT 
ORlGlNAL PAGE IS 
OF POOR QUALITY 

e 

A Yodified Independent Modal Space Control ( M I ? I S C )  method is 

developed for designing active vibration control systems for large 

flexible structures. The method accounts for the interaction between the 

controlled and residual modes. It incorporates also optimal placement 

procedures for selecting the optimal locations of the actuators i n  the 

structure in order to minimize the structural vibrations as well as the 

actuation energy. 

0 

0 

The MIMSC method relies .on an important feature which is based on 

"Time Sharing" of a small number of actuators, i n  the modal space, to 

control effectively a large number of modes. 

0 

Numerical examples are presented to illustrate the application of 

the method to generic flexible systems. 

The obtained results suggest the potential of the devised method in 

a designing efficient active control systems for large flexible structures. 

a 
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OF POOR QUALITV INTRODUCTION 

Considerable attention has been directed recently towards the desigr! 

of active vibration control systems for large flexible structures, The 

strategies employed in the design of such control systems are based 

primarily on the modal control methods whereby the flexible structures 

are controlled by controlling their dominant modes of vibrations. 

Generally,.these modal control strategies belong to either the class of 

the coupled methods [l-61 or to the class of the independent modal space 

control (IMSC) method developed by Meirovitch and Coworkers [ 7 - 1 2 1 .  In 

the first class, the closed-loop equations of the system are coupled b-ia 

the feedback control such that the optimal computation of the feedback 

gains requires the solution of a coupled matrix Riccati equation [ 3 - 6 1 .  

For large flexible structure the solution of the resultiilg Riccati 

equation can pose serious difficulties which limit significantly the 

applicability of the coupled modal control methods. The IYSC netkigd 

avoids, however, such limitations as the control laws are designed 

completely, in the modal space maintaining the originally uncoupled open- 

loop equations of the system as a set of independent second-order 

equations even after including the modal feedback controllers. MeirGvitch 

el a1 [7-121 showed, under such conditions, that it is possible to 

compute, in a close form, the optimal modal feedback gains. This feature 

makes the IMSC method computationally attractive and lends it suitable 

for controlling large structures. 

However, the present study is initiated to modify the INSC method to 

account for the spillover from the controlled modes into the uncontrolled 
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modes due to the. use of fewer actuators than the modeled modes. The IMSC 

is also modified to incorporate an optimal placement procedure that will 

enable the selection of the optimal location of the actuators i n  the 

structure to ensure minimal amplitudes of oscillation and input control 

energy. A third modification of the IMSC is to include an efficient 

algorithm for time sharing a small number of actuators, in the modal 

space, to control a large number of modes of vibrations. 

With these nfodifications, the MIMSC method would provide more 

effective and faster control of the vibration of flexible systems. 

MODIFIED INDEPENDENT MODAL SPACE CONTROL METHOD 

Modal Description of Flexible Systems 

Complex flexible systems can be modeled dynamically by a discrete - 
finite element'model as follows : 

. M i  t K6 = F . 

where M is the overall mass matrix of the structure 

K is the overall stiffness matrix of the structure 

6 and '8 are the displacement and acceleration of the nodal points. 

of the structure 

F is the vector of the external and control forces acting on 

the structure 

Equation (1) is put in the modal space by using the following 

weighted modal transformation : 

6 = gu 

a 



\ 

where U is the modal coordinates of the system 0 

e 

$ is the weighted.moda1 shape matrix of the eigenvectors o f  the 

flexible system 

Using such transformation, reduces the coupled equation of motion 

(1) to the following uncoupled form : 

.. 
U t h U = f  

where A is a diagonal matrix of the eigenvalues of the system 

f is the modal force matrix given by 

e 

or 

e 

0 

f = $TF 

( 3 )  

where f c , ~  are the modal forces on the controlled and residual modes 
e 

respectively. 

F C , R  are the physical forces on the controlled and residual 

modes. 
e 

$i(lj).iS the modal shape at mode i and location lj. 

The above equation can be rewritten as ': 

e 



a 

a If only C modes are controlled with equal number of control forces F c ,  

then FR=O and equation ( 6 )  reduces to : 

0 

0 

f c  = B C C F C  

and 

(7) 

(8) fp B R C F C  

E f f e c t  of Control Spillover ' 

In the IMSC method, it is assumed that the control forces Fc wlll 

not contribute to the excitation of the residual higher order modes. 

Accordingly, it was assumed that there is no control spillover from the 

controlled modes into the uncontrolled modes, Mathematically, this means 

e 

that the IMSC method assumes that fR=O. This of course can only be true 

if the number of controlled modes is very large compared to the number of a 

residual modes or when the residual modes are at much higher frequency 

band than the controlled modes. If these two conditions a r e  not 

satisfied, then there will be considerable interaction between the 

controlled and residual modes. 

0 

The MIMSC method considers such interaction by calculating the 

optimal modal control forces [fc] using the IMSC close form solution of 

the Riccati Equation such that the control force fi of the i t h  mode, as 

e 

given by [ 7 3 ,  is : 
0 

0 
where R is a factor that weighs the importance of minimizing the 

vibration with respect to the control forces, 

is the resonant frequency at the i t h  normal mode. 



a u i ,  u i  are the modal displacement and velocity respectively, 

g 1 ,  g 2  are the modal position and velocity feedback gains given by 

1 7 1  as : 

b1 = - U i R  t v( w i R ) 2  + w i z R  (10) 

( 1 1 )  

Accordingly, the displacement u i  and velocity G i  at the i t h  mode can 

be feedback and used along with equations (9), (10) and (11) to determine 

the modal control force fie 

0 
$ 2  = d 2 R U i [ - ~ j R  t d( U i R ) '  t U i Z R ]  + Ui 2 R  

0 

Once these forces are calculated, equation (7) is solved to give the 

physically applied control forces FC as follows : 

Then equation ( 8 )  is used to calculate the modal forces f R  that a -. 

would excite the residual modes which are generated by the spillover from 

the controlled modes. Definitely these f R  are not equal to zero as 

0 originally assumed in the IMSC method. 

Equations (15) can then be integrated with respect to the time to 

determine the modal displacements ( u i )  and velocities ( h i )  which c a n ,  in 

e turn, be used again to compute the modal forces f and so on. 

From the modal displacements and velocities, the physical state (6) 

of the flexible system can be determined from equation ( 2 ) .  A ' 

e relationship can therefore be established between the physical s t a t e  of 

the system and the physical control forces Fc applied to it. 

Optimum Placement of Actuators 

It is very important to point out here that the magnitude of the 



0 

a 

a 

0 

0 

0 

a 

a 

e 

e 

a 

modal forces fc depends.primarily on the magnitude hi's of the controlled 

modes as well as the modal state variables u and 6 .  On the other hand, 

the magnitude of the actual physical control forces Fc depend-s mainly, 

for a given controlled mode, on the point of application of these forces 

as defined by the matrix BCC-1. Therefore, minimizing fc does not 

necessarily means that Fc will be minimum inspite of the fact that it, is 

represented as a linear combination of Pc. This is simply because the 

coefficients of the linear combination, which are elements of the BCC-1 

matrix, depend on the placement strategy of the control forces F c .  One 

could still find an optimally placed set of physical control forces F C  

such that the physical displacements and control forces would assume 

minimum value. 

This optimum placement of the physical control forces is an 

important feature of the MIMSC method and will be demonstrated to be 

essential part of the design of the active control system. 

- 

One should stress here also that if all the modes are controlled arid 

there is no residual modes then the conditions for minimizing f c  will 

make Fc minimum as well. But, in real large structures this will be 

unlikely to happen as the number of controlled modes is much smaller than 

the number of modeled modes. Therefore, it is essential to augment the 

I3SC method. with an optimal placement algorithm to guarantee efficient 

design of the control system. 

The optimum placement of the actuators is implemented through the 

use of the C'nivariate Search method which varies the location of one 

actuator at a time in order to : 

Minimize / c 6 2  t RFc*) dt (13) 



a 
In other words, the optimal placement algorithm minimizes the 

weighted sum of the amplitudes of  vibration and the generated contrcl 

forces, The weighing factor R is selected by the designer to emphasize 

the importance of.damping out the vibration over the expended control 
a 

energy (when R < < 1 )  or vice versa when R>>1. Equal importance of the two 

parameters is achieved with R = l .  
, 

Time Sharing of Actuators in the Modal Space 

The MIMSC method incorporates also an extremely important feature 

which is based on the "TIME SHARING" of a small number of actuators in 

the modal space to control large number of modes. 

0 

Two time sharing control strategies are considered to generate the 

modal control forces. The first is sequential and the second is based on 

the modal energy. 

e In the sequential time sharing strategy, the control forces are 

computed, at the first time interval, to control the first through the 

C t h  modes using C actuators. Then, at the second time interval, the 

a control signals are computed s o  as to control the second through the 

(C+l)th modes followed by commands to control the third through the 

(C+Z)th modes and so on until all the modeled modes are controlled in 

I, this sequential fashion. Once all the modeled modes have received t h e i r  

share from the control action the cycle is repeated again to effectively 

damp out all the modes of vibration with few number of actuators. This 

a strategy will be shown to result in efficient control of the vibration of 

large structures with relatively small number of actuators when the IMSC 
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fails to do so. 

Better yet, control of the vibration can be achieved when the time 

sharing is based on the modal energy strategy particularly when the 

number of controlled modes is very small compared to the uncontrolled 

modes 

In this strategy, the modes of vibrations of the flexible system are 

ranked according to their modal energy level. If C actuators are to be 

used, then these actuators will be dedicated, at any instant of time, to 

control the C modes that have the highest modal energy. In this way, the 

actuators will first attenuate the modal energy of the controlled modes. 

During that time the control spillover will cscite the uncontrolled 

modes. When the modal energy of the uncontrolled modes starts exceeding 

that of the controlled modes, the actuators are switched to control these 

high energy modes in order to damp out their vibrations. Such time 

sharing of the actuators between the modes will eventually bring all 

these modes under control. 

Figure (1) outlines a flowchart of the MIMSC method indicatjng the 

main steps of optimal placement and time sharing of the actuators as 

well as the consideration of the spillover between the controlled and 

residual modes. 

Application of MIMSC 

The MIMSC method is utilized to design active vibration controllers 

for flexible system when subjected to specific external loading and end 

conditions. The resulting dynamic performance of these systems is 

compared with their performance when controlled by the IMSC in order to 



illustrate the merits and potential of the MIMSC method as a viable and 

efficient method for actively controlling the vibration of large systems 

with only few actuators. 

0 

e 

e 

0 

NUMERICAL EXAMPLES 

I. Multi Spring-Mass System 

Figure (2) shows a multi spring-mass system which is considered as a 

simple example of a flexible system to illustrate the intricacy of the 

MIMSC method. The main dynamic characteristics of this system are given 

in Table (1). 

0 

0 
A. Control by two actuators with weighting factor R=l 

(i) Using IMSC method 

The three masses of the flexible system shown in Figure ( 2 )  are 

displaced initially 1,-1 and 0 respectively from their equilibrium 

positions and then left to vibrate under the action of  an IYSC controller 

0 with all the states are observed. The controller is designed to control 

the first two modes of vibrations through the use of two actuators placed 

at the first and second masses. 

- 

Figures (3-a) and (3-b) show the time history of the amplitudes of 

vibration of the three masses and the associated control forces 

respectively. 

0 Figure (3-a) indicates that after an initial transition period of 

about 4 seconds, a state of limit cycle is attained. During this state, 

the first and the third masses undergo in-phase oscillations which are of 

0 the same amplitude and frequency. The second mass vibrates, however, in 

the opposite direction at the same frequency but at a higher amplitude. 
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Loading on s t r u c t u r e  
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-Determine t h e  reducedmodal shape matrices 
corresp.  t o  actuators and s e n s o r s  l o c a t i o n s  

e 

Compute time h i s t o r y  of a l l  
nodes i n  modal coo rd ina te s  

e 

Compute time h i s t o r y  of a l l  

0 

e 

e 

a 

Geometry, elastic and i n e r t i a l  

1 

I INPUT i 

Coerpute normal modes and modal shape of I t o t a l  s t r u c t u r e  wi th  a c t u a t o r s  ,', 
I n i t i a l  loca t ion  of a c t u a t o r s  

Change actuator 
l o c a t i o n  and I number 

No Yes 

Figure  (1) - Flow c h a r t  of  t he  MIMSC Computational Algorithm 

~~ ~~~~ 
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Table( 1) - Dynamic characteristics of the spring-mass system 

............................. 
Stiffness Hatrix ............................. 

2 . 0000 -1 . 0000 0 . 0000 
-1.0000 2*0000 -1.0000 

0.0000 -1.0000 2.0000 

msr m t z i x  
............................. 
............................. 
10 0000 0.0000 0 . 0000 
0 . 0000 1.0000 0 . 0000 
0 . 0000 0 . 0000 1.0000 

E i gcnva luc s 
............................. 
............................. 

0.5058 2 . 0000 3.4142 ............................. 
Bigenvector8 ............................. 

0.5000 -0.7071 0 . 5000 
0.7071 0.0000 -0 7071 
0.5000 0.7071 0.5000 ............................. 
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Relating such an observation to the dynamic characteristics of the 

system, given in Table ( 1 1 ,  one finds that this limiting state 

corresponds to the third normal mode of vibration. Accordingly, the I Y S C  

method has been successful in damping out, as intedded, the first and 

second modes of vibration during the first 4 seconds.' The method fails, 

however, to reduce the excessive amplitudes of vibration of the three 

masses at the third mode of vibration. Such drawback can be related 

directly to the fact that the two actuators have been utilized only to 

eliminate the first two modes and once this goal has been achieved the 

two actuators ceased'to provide any control action as can be clearly seen 

from Figure (3-b). In other words, the two actuators became completely 

idle inspite of the fact that system is still vibrating. This observation 

constitutes the main motivation for the concept of time sharing the 

actuators in the modal space which is the basic feature of the YIXSC 

method. 

(ii) Using MIMSC method 

With the time sharing concept, the MIMSC utilizes effectively the 

installed actuators such that these actuators will not cease to operate 

unless the vibrations of the system is completely damped out. 

Accordingly, in the considered example, the two actuators are powered by 

signals to eliminate all the three modes of the system and not only the 

first two modes as in the IMSC. This is achieved by time sharing the two 

actuators, among the three modes, either sequentially or based on the 

maximum modal energy ranking. 

Figures (4-a) and (4-b) show the time history of the amplitudes vr" 

vibrations of the three masses and the associated control forces of the 
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F w e  (41 - Time history of amplitude of vibration and control forces 
for springmass system using MlMSC with sequential 

time sharing of two actuators ( M I  
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two actuators respectively when the MIMSC utilizes a sequential time 

sharing strategy. 

Figure (4-a) indicates that sharing the small number of actuators 

among a 1arger.number of modes has been effective in damping out the 

amplitudes of vibration of all the modes. Such a process is done by 

making these actuators work as long as there is vibration to be damped 

out as can be seen from Figure (4-b). This is unlike the same two 

actuators which have been only partially utilized by the IMSC method as 

indicated in Figure (3-b). 

When the time sharing strategy is based on dedicating the two 

actuators to control the two modes that have the highest modal energy 

( U z t U z ) ,  at any instant of time, then the resulting time history of the 

amplitudes of vibrations of three masses and the associated.contro1 

forces are as shown in Figures (5-a) and (5-b) respectively. 

Figure (5-a) demonstrates the effectiveness of the scheme of time 

sharing based on the ranking of the modal energy. in suppressing the 

vibration of the three-mass system in a fashion which is more efficient 

than the sequential scheme and definitely than the IMSC method. 

A better quantitative comparison between the two schemes can be 

established based on the displacement, control force, and control energy 

indices U d ,  U c  and U E  which are given by : 

t=t* N 

t=O i=l 
I J C  - - 1. 1 Fjz*At 

e 
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0 
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t=t* N 

t=O i=l 
U E  = 1 I Gi*Fi(At 

where N is the number of d.0.f. of system 

At is the integration time increment 

t*' is the maximum time limit of integration 

Table (2) summariees the results o f  such a comparison. 

. 
Table (2) - Effect of the strategy of time sharing two actuators on 

displacement, control force and control energy indices for 

spring-mass system with R = l .  

------------------------------------------------------------------------- 
Strategy . I Displacement Control forces Control energy 

1 
I index index indes 

Sequential I 2.44 32.36 7.11 
Modal energy I 2.15 13.99 3.09 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

B. Control by two actuators with weighting factor R=100 

The effect of increasing the weighting factor R to 100 on the time 

history of the amplitudes of vibration of the three masses and the 

associated control forces is shown in Figures (6-a) and (6-b) 

respectively. The figures emphasis the same trends observed for R = 1  

however and more importantly show that the MIMSC method is still very 

effective in damping out quickly the vibrations of  the three masses but 

with control forces of  much smaller magnitudes. For example, when R = 1 0 0  

the control forces required with sequential and modal energy time sharing 

assume maximum values of 0,460 and 0 . 5 2 4  respectively. These magnitudes 

are at least 6 times lower than those computed f o r  R = l  as can be seen in 
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Figures (4-b) and (5-b). 

Table ( 3 )  lists the effect of increasing R to 100 on the 

displacement, control force and control energy indices when the time 

sharing is based on sequential and modal energy strategies. 

The table indicates a considerable reduction in the control force 

and energy indices that are more dominant than the increase i n  the 

displacement index. 

Table ( 3 )  - Effect of the strategy of time sharing two actuators on 

displacement, control force and control energy indices for 

spring-mass system with R = 1 0 0 .  

In the case of the IMSC method, changing R did not influence at all 

the amplitudes of vibration at steady state but it did, however, prolong 

the duration of the transition time needed to eliminated the first t r c o  

modes. 

Accordingly, with optimally selected weighting factor R the ?II?ISC 

method can effectively suppress the vibration without the need. for 

excessively large control forces. 

C. Control by one actuator with weighting factor R=100 

To demonstrate more dramatically the effectiveness of the MIMSC in 

control1ing;the vibration of large number of modes with a small number of 

actuators a single actuator, placed at muss 1, is used to actively 



e control the three spring-mass system. 

Figures (7-a) and (7-b) show the time history of the amplitudes of 

vibrations and the associated control forces respectively as obtained by 

e the IMSC and MIMSC methods. 

Again the figures emphasis the potential of the MIMSC particularly 

with its modal energy time sharing strhtegy as a viable active control. 

0 Table (4) summarizes the results obtained from the analysis of  these 

figures. 

Table (4) - Effect of the strategy of time sharing on& actuator on 

displacement, control force and control energy indices for 

spring-mass system with R = 1 0 0 .  

11. Cantilever Beam 

0 A .  The beam system 

Figure (8) shows a steel cantilever beam modeled by a 3-finite 

element modal that has 3 d.o.f, of linear translation and 3 d.0.f. of 

a angular rotations with node 1 fixed, The beam is 0.15m long and has 

rectangular cross ' section which is 0.0125m wide and 0.0021m thick. For 

this beam, the normal modes of vibrations are found to be 7 3 ,  3 8 2 . 6 ,  

a 937.7, 1582.8, 2134.1 and 2519.0 Hz respectively. 

B. Performance with one actuator 

a 
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In this example, the beam is assumed to be controlled by one linear 

actuator placed at its free end, i.e. at node 4 .  The beam is subjected to 

an impulsive load of magnitude 1.ON and duration of 0.lms. 

a 

The IMSC and the MIMSC, with its two time sharing strategies, are 

utilized to design the active controller of the beam. These methods are 

compared as far as their effectiveness in damping out the vibration of 

the beam as shown in Figure (9). 0 
_ _  The figure indica'tes that the IMSC is again successful in 

suppressing the lowest mode of vibration but all the higher modes remain 

totally undamped. On the contrary, the MIMSC with the modal energy time 

sharing exhibits complete control over all the modes and effective 

damping is demonstrated. Also the maximum amplitude of oscillation of the 

0 beam is observed to be, in this case, about 10.7% lower than that 

obtained with the IXSC method. 

Considering, however, the MI?ISC method with sequential time shai-ir.2 

0 it can be seen that this strategy is not as effective as the modal energy 

strategy or the IMSC method. The reasons are obvious and it is important 

to cite them. First, the beam being a six-mode system controlled by one 

e actuator, then, it is essential to utilize this actuator in the best 

possible way. Dedicating it to the first mode, as in the IMSC, is found 

adequate to damp out large amplitude oscillations but inadequate to take 

a care of the high frequency jitters. Using this actuator to control any 

mode in any sequence without due consideration to its contribution .to the 

system's vibration or energy is definitely a reason behind the 

a ineffectiveness of the sequential time sharing strategy. But, once the 

actuator is set to control always the mode that has the highest modal 
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energy then the time'sharing is efficient and fast. The second reason for 

the inadequacy of the sequential time sharing in the case O F  the beam, 

unlike the three spring-mass system, is that as the actuator is 

sequential to control the high frequency modes, which may have low energy 

level, it leaves the high energy modes uncontrolled. Therefore, the more 

the number of modes between which an actuator is shared, the longer it 

will take to go through them all and come back to control the low 

frequency modes that may still have the high energy. The delay period in 

controlling the high energy modes increase as the number of modes is 

increased and accordingly this will prolong the time needed to actively 

bring the structure under control. . 
Quantitatively, the comparison between the two time sharing 

strategies is given in Table ( 5 ) .  

Table ( 5 )  - Effect of the strategy of time sharing one actuator ori 

displacement, control force and control energy indices for 

cantilever beam with R=100. 

Strategy I Displacement Control forces Control energy 
I index (xlO9) index (x lO5 ) index ( ~ 1 0 6 )  

C. Optimum placement of one actuator 

The MIMSC method is used to optimally place a single actuator in the 

considered beam system. Table ( 6 )  summarizes Lhe effect of placing the 

actuator on the displacement, control force and control energy indices. 



0 
Table (6) - Effect of actuator location on displacement, control force 

and control energy indices for cantilever beam. 

The obtained results.suggest that the actuator should be of  the 

rotary type and be placed at node 3. At this location the displacenient as 

well as the control energy indices are minimal. The table suggests that 

the location and type of actuator have a considerable effect on the 

system performance unlike what is stated by the IMSC method, 

e 
CONCLUSIONS 

This report has presented a modified algorithm of the Independent 

a Modal Space Control method where control spillover as well as optimum 

placement and time sharing of actuators have been considered. 

The considered numerical examples indicate the importance of 

a including such modifications to the IMSC. 

It is shown that time sharing a small number of actuators between a 

large number of modes can be effective in suppressing the vibration if 

a the actuators are dedicated to control the modes that have the highest 

modal energy at any particular instant. 

a 
I 
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II, 

The presented algorithm has the potential of being a viable means 

for controlling large flexible structures. 
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